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ABSTRACT: Calculations are made on the probability of
trapping an inert gas atom on a solid surface. A linear
lattice is taken as a model for the solid crystal. The
interaction potential between the solid surface and a gas
atom is assumed to be the square well type. For every
energy level of the bound state, there exists an incident

energy which has the maximum probability of trapping.

This paper discusses previous research and experimentation on the
boundary conditions on the surface of a solid in a stream of low density gas
and describes a method of quantum mechanical calculation of them, postulating
a simple collision model for the interaction of gas and solid molecules.

1. Introduction

One of the problems remaining in the dynamics of rarefied gases is that
of boundary conditions, as described in "Prospects.'" This problem is also
important in calculating the flow of an actual gas, as Takano has described
elsewhere in this issue. It is impossible to determine accurate boundary
conditions unless one knows clearly at what velocity and in which direction a
gas molecule (atom), which strikes the surface of a solid in a certain
direction and velocity, is reflected. In the past, this problem has been
investigated by dividing it into two approaches. In one approach, the problem
is restricted to one dimension and the difference between the velocity of the
incident gas molecule and the velocity of the reflected gas molecule is
described, i.e. a thermal accommodation coefficient is determined. The other
approach is to determine the law of distribution of the angles of reflection.
Experiments and theoretical studies on the former approach have been conducted
for a long time, but the first highly reliable work began in 1930 with the
publication of the results of experiments by J. K. Roberts [1].

In the 1930's, British physicists, primarily J. M. Jackson, N. F. Mott,
A. Howarth, J. E. Lennardjones, C. Strachan and A. F. Devonshire published a

series of reports to explain the results of Robert's experiments [2, 9]. Their
approach is to consider a solid as an aggregate of many oscillators, to deter-
mine the probability of transition of the state of oscillation of the oscil-
lators in the solid when struck by a gas atom and to derive the thermal

* Numbers in the margin indicate pagination in the foreign text.
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accommodation coefficient from this. Since they consider that the incident

gas atom strikes the surface of the solid perpendicularly, no information
concerning angular distribution can be obtained. Moreover, they give no
consideration to the process in which part of the kinetic energy of the
incident atom is absorbed by the surface of the solid and is transmitted to
the inside.

Consequently, no explanation is given concerning the trapping of the
gas atom by the solid surface after the atom has lost its kinetic energy, i.e.,
the process occurring when adsorption is taking place. Physicists lost
interest in the problem of the interaction of gas molecules and solid surfaces
after the 1930's, and no one considered the problem again until the end of the
1950's. However, at that time, after the launching of artificial satellites,

it became necessary to determine the coefficient of resistance of an object
flying through rarefied gas. At that time, attention again became focused on
the interaction of gas molecules and solid surfaces, and many experiments were
conducted concerning measurement of the thermal accommodation coefficient, and
the distribution of incident molecules and incident angles. At the present
time at least, the experiment data are almost all available [10]. However,

no progress has been made on the theoretical side since the series of papers
written in the 1930's. In particular, no theory exists concerning the
incident angle distribution.

The difficulty with any theory of reflected angle distribution arises
from the fact that, especially in the vicinity of normal temperatures, there
is apparently mixing of diffuse reflection and specular reflection, since a
considerable amount of incident molecules (atoms) are ejected after being
adsorbed momentarily on the solid surface (See Figure 1). For this reason, it
is first necessary to explain, from the standpoint of mechanics, the mechanism

of adsorption, in order to
oo NI e o ’ ) construct a.valid tbeory of reflec—
ted angle distribution. Classical
mechanical calculations of this
were carried out recently by
B. M. McCarroll and G. Ehrlich [11]
for a one-dimensional chain type
crystal model. However, their
calculations are only for the case
where the temperature of the solid
is absolute zero. This is due to
.r:::i:C f?f'fic the difficulty of giving an initial
' " vibration corresponding to the

_ temperature, in one-dimensional
Figure 1. Angular Distribution of chain type crystals.
Helium Reflected from Platinum
Surface (See Reference 10).

Tu, = 25°¢C T, = 1870°C
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However, adsorption has been considered as a phenomenon occurring on a
quantum mechanical scale, so the author presents quantum mechanical calcu-
lations on a one-dimensional model.

2. The Model /267

The solid is considered to be a chain of atoms of mass M, distributed
at equal intervals on a straight line. In the transmission of energy in such
a model, the excitation of a state of vibration in some atoms causes a state
of vibration in other atoms, due to their interaction, i.e. this takes place
in the form of the transport of phonons. If we disregard the interaction
occurring between atoms other than those adjoining each other, the process of
generation and extinction of phonons due to their collision does not occur
in the one-dimensional model [12]. 1In such a case, the solution of
Boltzmann's equation expressing the transport of phonons is expressed in the
form N = func(z - vt), where N is the number of phonons in a wave packet at
position z. This expresses a traveling wave proceeding at a velocity v,
without changing its shape.

Now we consider the case of a gas
. atom of mass m striking in one dimen-
1 P sion in the direction of the chain of
o :
:
|

solid atoms (See Figure 2). We consider
here only two atoms: the gas atom and the
atom on the surface of the solid (atom
No. 1 in the figure), and call this
system M-m. Henceforth the atoms on

the surface and the gas atoms will be
called M and m, respectively. The
instant that atom m strikes atom M is
assumed to be t = t;. Assuming that

“"(:>“_

—®

Figure 2. M-m System.
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N phonons are generated at tie moment of collision in atom M (atom 1) which
sustained the collision of atom m; these N phonons all move to atom 2 when

t = t0 + aO/v (where v here is the rate of propagation of the phonons, and

a, is the distance between lattices in the solid crystal). That is, energy

of Nlw is lost from system M-m. (Here,h is the value obtained by dividing
the Planck constant by 27 and w is the angular oscillation frequency when M
is assumed to be a harmonic oscillator). However, it is not possible to
determine the process occurring while energy is being discharged from system

M-m, when t is within tO ~ tO + ao/v, from the solution of Boltzmann's

equation which does not contain the term for collision. For this reason we
make the following assumptions.
There is no loss of energy from system M-m when t < ty * a0/2v

Energy loss is Nhw from system M-m when t > ty * ao/2v



3. Schroedinger's Equation and Its Solution

Using the above assumption, Schroedinger's equation for system M-m
can be written as follows:
32

;12
h*A—~ ~ - Xr—t
‘ [~on axz+ M = B2 (1)
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+V(x, X) Mm.”:{t <to'+ 2 )}]sb

Here, ¢ is the wave function of system M-m, V(x, X) is the potential energy
from the interaction of M and m. The coordinates X, x indicate respectively,
the positions of atoms M and m with the equilibrium point of atom M as the
origin (See Figure 2). Also, E { t - ty * aO/ZV)}is the unit function

determined by the following equation:
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Now, the energy discharge from system M-m, which is expressed by the

last term in equation (1), occurs suddenly when t = t0 + a0/2v = tl. At this

instant, the wave function itself may be considered as unchanging. Expressing

the wave function when t < tl as wl’ and as wz when t > tl’ we assume these

can be expressed as follows by the wave functions of unperturbed systems /268

X (x, X) and 1 (x, X). —
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The specific forms of x and 7 are indicated later. The symbol ¢S‘
indicates integration of energy eigenvalues when the energy eigenvalues En’

Wn, Ei, Wk are continuous. If there are any discrete ones, it indicates the
sum with respect to their eigenvalues. Now, since when t = tl, wl = wz,
m( Wiyt E ,)r.
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Multiplying both sides by “pq* and integrating over all coordinates,
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is obtained. Here M1 is assumed to satisfy the normalized condition
J‘Inn*nudde =1

As is indicated below, the equation expressing bpq(t) includes one

constant of integration and is determined by the conditions in (3). Now,
let us determine some concrete forms of wl and Vs For this purpose, the

interaction potential V(x, X) must be given. We assume the form of V (x, X)
to be as follows (See Figure 3).

J' 0 z—X>b

V:l —¢ 0<a—X<h

[/} b x-% o x—X<0
Figure 3 Interaction Equation (1) is solved for such
Potential V(x,X), but here we will solve using a

perturbation method [13]. Basically V is
a function of (x - X), but since X is small we assume it to be close to
zero, and considering V to be a function only of x, we will rewrite as
follows: :

0 .x>b
| %4€D) :{ —¢ 0<x<db
o a<0

First, we shall determine the wave function wl, when t < tl. For a

zero  order approximation equation of equation (1), the following equation
is obtained:

‘'
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Separation of variables is possible in equation (4), so its solution
can be expressed by
(yﬂ)mn—fm(r)gn(k)c * £ ow m+ En)t

=Xanlz, Xe~ § (Wt Bt

where we assume an(x,X) = fm(x) gn(X), and fm(x), gn(X) are eigenfunctions
satisfying, respectively, the following equations:

B3
2m‘ 5_5 +V (I)] Fal2y=Won ful2)

[ ZM 5&; + - 1\10)2X2]gn(x) =Engn(X)

The Wﬁ, En in the above equations are eigenvalues of the operators

on the left side and are usually called energy eigenvalues. Now, we assume
that the correct solution of equation (1) is expressed by

¢I=Smmamn(t) (¢0)mn (5)

Substituting (5) and (1), the following equation is obtained for the expansion
coefficient a

1futu(t)e —(Wr+Es)t

—'i’ m 13,
—_—S amn(t)e #(WmtE )t[J.J.X,-s*V'ZMndde]
I,

Here V' is the perturbation potential
V! = V{x - X) -V (x),

and an is assumed to be normalized. Assuming the expansion coefficient of
(t < 0) before interaction takes place to be amn(O), the expansion coefficient

ars at time t becomes as follows, through approximation

ar (t):tl 0 — [ a,’”ﬁ(,g)
3 :5(0) i Wonet on—Wo—E, |
L4 W
x{l_e~»£(w7,.+b,‘—ur—z~:s)c} l ; (6)
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The probability Prs that the particle expressed as a wave packet will

be detected in state rs at time t is given by the following equation.
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However, this refers to the case where t < tl.

It is also possible to determine the wave function wz where t > t1 in
the same manner as follows: ¢“=S (D /269
5kt
Here,
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fk(x) belongs to the same system of functions as fm(x) as in the case of wl

and ul(X) is the eigenvalue satisfying the following equation.
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assuming that ﬂkl(x,x) = fk(x)ul(X) is normalized, the expansion coefficient

bkl(t) is expressed approximately as follows [14]:
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Assuming that t and t, are not much different from what they were in

equation (3), the following relationship is obtained.

1bpe(2)[*=lape (1]t

The significance of this is that the probability that system M-m will
be found in state bpq is equal to Iapq(tl)[ . Consequently, the values of

P__ in equation (7) where t = t1 express the probability after t To find

rs 1



Prs from equation (7), it is necessary to find the values in the following

equation which are called matrix elements
‘7'r:.mn=‘[jxrs*v’xmndde (8)

Since we are dealing with the phenomenon of adsorption, we may assume
Wm > 0, Wr < 0. For purposes of further simplification, the state of

oscillation of atom M is first the basic state (n = 0), so let us consider
the case in which it collides with atom m and changes to the first state of
excitation (n = 1). Of course, the state of oscillation of atom M is not
limited to n = 0. The transition occurring from collision is not restricted
to 0 - 1, as there is also 0 »~ 2, 0 - 3, etc., but we shall consider here
only 0 -~ 1, whereupon fm, fr’ 89> & become respectively, as follows:

csinar (0<x<p)
!

s cos ab cos ,3[;) sin 8z :

(c sin ab-sin Sb-+¢ B
fm(-‘l'): (9)
+ (r sin @b+ cos ;%*c% sin 8b cos ab)
X cos B (b<z)
sina’r (0<a<h
e (9")
e lsina’brem¥r (b<y)
Here
_ [ 2om(W--05) _ fom W,
a“\/’ T ﬂ*‘\/ 2

;e 2m(¢ —[W.h ,_ foni Wl
a—«»\/» T ﬁ_\/ R

Also, ¢, c' are determined by normalized conditions.
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Substituting each of the above equations in (8)
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is obtained. An extremely troublesome procedure of approximation computa-
tions is required until the final equation in (10) is obtained and is omitted
here.

4. Procedure Using Wave Packet

According to equation (7), the incident wave packet must first be
given in order to determine the probability that the particle will be found
in a trapped state. This is because the energy eigenvalues of the final
(trapped) state are rather scattered, so that it is not possible to derive
the transition probability per unit of time, which is normally not a function
of time, and even if the incident particle is expressed by a plane wave,
significant results cannot be obtained. The wave packet which originally
should have been given included the two variables x, X, but since the state
of oscillation of the solid atom is clearly indicated for both prior and after
interaction, x and X can be separated and the incident particle alone can be
expressed by the wave packet. The wave packet expressing the incident
particle where t = 0, is given such that it has the given average velocity
and average position x = b. Any form of the wave packet will do, but it
cannot be expanded by eigenfunctions (9) and (9') unless it is zero when
X =0and x = L (L is the length used when the eigenfunction of the incident
particle has been normalized). Consequently, the generally employed minimum
wave packet [13]

' R Y
W =tzatanrT e = O S0 4 ]

cannot be employed. (In the above equation, {x) and (p) are average
values for position and momentum respectively, Ax is the uncertainty of the
position). The author attempted to find a (t) by following equation (6),
for a wave packet with several simple shapgg, but at the stage of determin-
ing the expansion coefficient %n (0) in the case when the given wave packet
where time t = 0 was expanded by the energy eigenfunctions (9) and (9'), it
was necessary to determine many definite integrals, so the numerical /270
computations were performed on Tokyo University's OKITAC 5090, but the
capacity of the computer was somewhat too small and adequate results were

not obtainable. I would like to postpone specific examples of numerical
values to a later report. However, the following conditions can be seen from

equations (6) and (10). The matrix elements in equation (10) may become
zero, according to the value of kinetic energy Wm of the incident particle,

and in this case, the ars(t) computed by equation (6) approaches zero.
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Consequently, practlcally no adsorption occurs in this case. For example,
using tungsten for atom M and helium for
atom m, using the numerical values of

b =5 x 10‘8cm, ¢ = 8.54 x 10714 erg,

2.7 % lolsrad/s, 3, = 3 X 10_8cm,
5.4 x 10 5cm/s, the matrix element
T Ry becomes zero, where W is 0.9 x 10 -14

erg., 2.0 x 10~ 14erg, 3.3 x 10~1l4erg,

(]

v

O

oa 2o T

Figure 4. Probability of so in this vicinity, the adsorption

Adsorption Being Caused. probability approaches zero (See
Figure 4). However, Figure 4 is an
estimation.
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